看黄色一级片-婷婷激情丁香-久久综合狠狠综合久久综合88-大j8黑人w巨大888a片-蜜臀99久久精品久久久久久软件-色噜噜一区二区-国产精品普通话-丰满亚洲大尺度无码无码专线-老牛影视av老牛影视av-国产内谢-亚洲国产成人无码av在线影院-亚洲视频欧美-特级黄aaaaaaaaa毛片-超碰日韩在线-99偷拍视频精品一区二区-av大片网址-国产特级乱淫免费看-黄色在线观看免费视频-欧美日韩国产精品激情在线播放-日韩在线国产

18123966210

product

產品中心

當前位置:首頁產品中心OssilaOssila材料PTB7 CAS:1266549-31-8 Ossila材料M213

Ossila材料PTB7 CAS:1266549-31-8 Ossila材料M213

產品簡介:Ossila材料PTB7 CAS:1266549-31-8 Ossila材料M213
英國Ossila代理、廠家直接訂貨、原裝正品、交期準時、洽談?。?/p>

產品型號:

更新時間:2025-03-31

廠商性質:代理商

訪問量:2275

服務熱線

0755-23003036

立即咨詢
產品介紹

只用于動物實驗研究等

Applications

PTB7 for high-performance organic photovoltaics.

Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], more commonly known as PTB7.

In stock now for immediate dispatch worldwide.

PTB7 gives some of the highest reported efficiencies for polymer:fullerene solar cells due to its extended absorption into the near infra-red and lower HOMO level. Together with our complete package of processing information, PTB7 becomes a quick and easy way to improve device efficiencies. This represents a cost-effective method to increase performance and impact of devices and data for a wide range of OPV related research.

At typical concentrations for spin-coated devices of 10 mg/ml, a standard batch of 100 mg will produce 10 ml of ink - enough to coat 200 of Ossila's standard sized substrates even assuming 50% ink loss during preparation and filtration. At concentrations of 1 mg/ml (more typical for ink-jet printing and spray coating) up to 100 ml of ink can be produced.

In a standardised reference architecture (using a PEDOT:PSS hole interface and Ca/Al electron interface) we have shown this batch to give a PCE of 6.8% (see data sheet below) and up to 7.4% using PFN. By using new interface materials and architectures PTB7 has been shown to reach efficiencies of 9.2% PCE in the literature [1,2].

The high solubility in a wide range of solvents makes ink preparation and filtration simple, and PTB7 is one of the easiest materials we have ever worked with (simply shake it to dissolve). This also makes it an excellent candidate for a variety of coating techniques including ink-jet printing, spray coating and blade coating.

For information on processing please see our specific fabrication details for PTB7, general fabrication video,general fabrication guide, optical modelling paper on our standard architecture [3], or us for any additional help and support.

References (please note that Ossila has no formal connection to any of the authors or institutions in these references):

  • [1] Enhanced power-conversion efficiency in polymer solar cells using an inverted device structureZhicai He et al., Nature Photonics, V 6, p591–595 (2012).
  • [2] Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells Zhicai He et al., Advanced Materials, V 23, p4636–4643 (2011).
  • [3] Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode Darren C. Watters et al., Organic Electronics, V 13, p1401–1408 (2012)
  • [4] Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%, N. Gasparini et al, Nat. Energy, 16118 (2016); doi:10.1038/nenergy.2016.118 (Ossila PTB7 was featured in this paper).

Ossila材料PTB7 CAS:1266549-31-8 Ossila材料M213

Datasheet

<:figure style="BOX-SIZING: border-box; TEXT-ALIGN: center; WIDOWS: 1; TEXT-TRANSFORM: none; BACKGROUND-COLOR: rgb(255,255,255); TEXT-INDENT: 0px; MARGIN: 0px; DISPLAY: block; FONT: 14px/20px 'Open Sans', 'Open Sans', 'Liberation Sans', 'Helvetica Neue', Helvetica, sans-serif; WHITE-SPACE: normal; LETTER-SPACING: normal; COLOR: rgb(51,51,51); WORD-SPACING: 0px; -webkit-text-stroke-width: 0px">
 

Chemical structure of PTB7; Chemical formula (C41H53FO4S4)n.

Specifications

Full namePoly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
SynonymsPTB7
CAS number1266549-31-8
Absorption670 nm (CH2Cl2), 682 nm (film)
SolubilityChloroform, Chlorobenzene, o-DCB

Ossila材料PTB7 CAS:1266549-31-8 Ossila材料M213

Usage Details

Inverted Reference Devices

Reference device were made on batch M211 to assess the effect of PTB7:PC70BM active layer thickness on OPV efficiency using an inverted architecture with the below structure. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PFN (6.5 nm) / PTB7:PC70BM (1:1.5) / MoOx (15 nm) / Al (100 nm)

For generic details please see the general fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

Previously it has been shown that PFN of around 6.5 nm gives optimum performance [1-3,P021] while modelling has shown that an Al back cathode gives higher performance than Ag when used with MoOx [4].

The PTB7:PC70BM solution was made in chlorobenzene at 25 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses of 75 nm, 90 nm and 105 nm were chosen corresponding to the lower, middle and upper end of the "thin film" absorption peak of a typical stack as predicted by optical modelling [1]. For each of these thickness a total of four substrates was produced, each with 4 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (12 pixels for each condition).

An additional two substrates were also prepared with a methanol wash to help remove the DIO as has been reported in the literature to help improve performance[5].

Overall, the maximum efficiency of 7.2% average PCE (7.4% maximum) was found at 75 nm film thickness.

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex III(1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PFN Solution

  • Dissolved at 2 mg/ml
  • Acetic acid dissolved 1:9 in methanol to make stock solution
  • 2 μl/ml of acetic added to solution
  • Stirred for 30 mins
  • Filtered through 0.45 μm PVDF filter

PFN Test Films

  • PFN Test film initially spun at 500 rpm and gave 20 nm
  • Second test film spun at 1000 rpm and gave 16 nm
  • Thickness was extrapolated to 6.5 nm at 6000 rpm

Active Layer Solution

  • Fresh stock solutions of PTB7 (Ossila M211) made on at 10 mg/ml in CB and dissolved with stirbar for 1 hour
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml and dissolved with stirbar for 1 hour
  • Old stock solution of 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active Layer Test Films

  • Test film spun at 1000 rpm for 2 mins using unfiltered solution and dried using methanol before Dektak
  • 1000 rpm gave approximay 85 nm

Active layers

  • Devices spun using 30 μl dynamic dispense (20 μl gave only moderate wetting/coverage)
  • Non methanol devices spun for 2 mins
  • Methanol devices spun for 30 seconds, then coated with 50 μl methanol by static dispense then spun at 2000 rpm for 30 seconds.
  • Cathode wiped with CB
  • Vacuum dried in glovebox antichamber for 20 mins

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

  • 15 nm MoOx at 0.2 ?/s
  • 100 nm Al at 1.5 ?/s
  • Deposition pressure

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 25°C
  • Room temperature at end of testing: 25°C
  • Calibrated aperture mask of size 0.256 mm2

Standard (Non-inverted) Reference Devices

Reference device were made on batch M211 using a standardised architecture for comparative measurements using Ossila standard substrates and materials. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PTB7:PC70BM (variable) / Ca (2.5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report and also Watters et al. [3] which details the optical modelling and optimisation of the multilayer stack.

For this standard reference architecture an average PCE of 6.6% was achieved for the optimised thickness with a peak efficiency of 6.8%. Note that no other optimisation was performed (blend ratio, DIO concentration, drying conditions etc) and so further small improvements may be obtained by varying these conditions and significant improvements obtained by using alternative interface materials [1,2].

Efficiency for different PTB7 spin speeds - Standard architecture Jsc for different PTB7 spin speeds - Standard architecture Voc for different PTB7 spin speeds - Standard architecture Fill factor for different PTB7 spin speeds - Standard architectureFigure 3: PCE, Jsc, Voc and FF for standard architecture devices at different spin speeds. Data shown is averaged with max and min overlaid with filled circles (please see note of Dektak measurements). As previously reported [1,2,3], films of approximay 90 nm give the highest performance with greater Jsc and only minor loss in fill factor.

 

PTB7 JV curve for standard architecture
Figure 4: The JV curve for the best performing device - standard architecture.

 

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex (1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PEDOT:PSS layer preparation

  • Clevios AI 4083
  • Filtered into vial using Whatman 0.45 μm PVDF filter
  • Spun 6000 rpm for 30 seconds (30 nm)
  • Dynamic dispense of 20 μl using pipettor
  • IPA cathode strip wipe and labelled
  • Put straight onto hotplate at 160°C as soon as cathode wiped and labelled
  • Transferred to glovebox when all samples spun.
  • Baked in glovebox at 150°C for 1 hour

Active layer Solution Preparation

  • Fresh stock solutions of PTB7 at 10 mg/ml in CB and shaken to dissolve
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml
  • 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active layer spin casting

  • Devices spun for 2 mins using 25 μl dynamic dispense
  • Cathode wiped with chlorobenzene
  • Left to dry in glovebox for 2 hours but colour indicated they were still slightly wet
  • Dried in vacuum in glovebox antichamber for 10 mins to remove DIO

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

MaterialCa
Base pressure8.0 E-8 mbar
Dep start pressure1.7 E-7 mbar
Max pressure2.7 E-7 mbar
Thickness2.5 nm
Rate0.2 ?/s
MaterialAl
Base pressure7.0 E-8 mbar
Dep start pressure6.0 E-7 mbar
Max pressure7.0 E-7 mbar
Thickness100 nm
Rate1.0 ?/s

 Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 0.99 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 21°C
  • Room temperature at end of testing: 21°C
  • Calibrated aperture mask of size 0.256 mm2

 

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

 


 

在線留言

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7

服務熱線
18123966210

掃碼加微信

主站蜘蛛池模板: 一级免费片 | 蜜臀久久精品久久久用户群体 | 无人在线观看免费高清视频的优势 | 一本色道久久综合亚洲精品按摩 | 亚洲高清二区 | 91久久精品日日躁夜夜躁欧美 | 久久久亚洲欧洲日产国码是av | 亚洲一区在线免费观看 | 精品一区heyzo在线播放 | 成人黄色小视频 | 天堂最新版在线www官网中文地址 | 九色激情网 | 中文字幕人妻无码一区二区三区 | 99国产精品 | 欧美日韩在线精品视频二区 | aⅴ在线视频男人的天堂 | 日日摸日日碰夜夜爽无 | 亚洲精品字幕在线观看 | 久久只有这里有精品4 | 国产国产精品人在线观看 | 黄色三级片毛片 | 午夜视频免费在线观看 | 亚洲色大成网站久久久 | 色偷偷一区二区无码视频 | 无码一卡二卡三卡四卡 | 99精品热视频这里只有精品 | 亚洲爽爽网 | 精品一卡2卡三卡4卡乱码理论 | 亚洲精品无码久久久久av麻豆 | 成人国产精品久久久 | 乱人伦视频在线 | 欧美成人亚洲高清在线观看 | 精品在线视频免费观看 | 巨大乳沟h晃动双性总受视频一区 | gogo人体做爰aaaa | 欧美一级黄色片 | 亚洲色成人网站www永久男男 | 国产精品久久久久久三级 | 色人阁色五月 | 国产精品无码免费专区午夜 | 免费观看黄色av | 成人羞羞视频免费看看 | 亚洲老女人av | 2020国产精品香蕉在线观看 | 国产又粗又猛又爽又黄91网站 | 午夜一区二区国产好的精华液 | 一区二区在线免费视频 | 日日噜噜噜夜夜爽爽狠狠同性男 | 欧美韩国日本 | 99精品偷拍在线中文字幕 | 欧美人与物ⅴideos另类 | 色射色 | 精品毛片在线观看 | 亚洲 欧美 中文 日韩aⅴ综合视频 | 在线观看911视频 | 天天鲁一鲁摸一摸爽一爽视频 | 老女人老熟女亚洲 | 日本网站在线 | 在线中文字幕亚洲日韩2020 | 久久日韩国产精品免费 | 天天操夜夜躁 | 久久国产精品99久久人人澡 | 日本无乱码高清在线观看 | 久久久免费毛片 | 日韩中文一区二区 | 永久黄网站色视频免费 | 午夜日韩福利 | 久久精品a一国产成人免费网站 | 亚洲国产精品成人精品无码区在线 | 青春草在线视频观看 | 亚洲 丝袜 制服 欧美 另类 | 国产精品三级视频 | 色婷婷我要去我去也 | 一本一道dvd在线观看免费视频 | 精品在线视频免费观看 | 亚洲成av人片在线观看www | 成人mv | 亚洲日本区 | 不卡av网 | 熟女人妻一区二区三区免费看 | 综合色吧| 欧美xxxx做受欧美.88 | 一a一片一级一片啪啪 | 香蕉视频久久久 | 在线观看国产成人swag | 性高湖久久久久久久久免费 | 日本aaa视频 | 国产精品香蕉在线的人 | 国偷自产一区二区三区在线观看 | 蜜臀av网站在线 | 在线观看一区视频 | 果冻传媒mv免费播放在线观看 | 国产怡春院无码一区二区 | 脱岳裙子从后面挺进去在线观看 | 青青免费视频在线 | 久久疯狂做爰流白浆xx | 色葡萄影院 | 精品爽爽久久久久久蜜臀 | 最新国产精品精品视频 |